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Abstract. A recent evaluation of the complexity of temporal planning
by Cushing et al. [1] unveiled the interesting result that many current
temporal planning problems may be transformed into classical ones in
linear time; in other words, they are actually not temporal. Based on this
insight, we introduce a new, graded classification of classical planning
problems that are temporal to some degree. We present a simple and
complete solution method for solving temporally non-simple, expressive
problems that makes use of this concept.

1 Introduction

Automated planning as a discipline of artificial intelligence is the process of find-
ing the right actions (from a list of available actions) that transform a source
state into a target state. Traditionally, state descriptions are given as conjunc-
tions of first order predicates. State modifications are then specified as param-
eterised “operators” (action templates) that need to be instantiated to form
concrete actions. They specify the conditions under which they are applicable
and the modifications to the world state that their application executes.

Planning problems are specified on two abstraction levels: An abstract de-
scription of a certain situation is given in the “domain” specification of the
planning problem, while the concrete initial and final states are specified in the
“problem definition”. Separating domain and problem definitions makes it pos-
sible to reuse planning domains for different concrete situations.

Planning domains can be classified according to the structure of the operators
and how they may be positioned in time. Classical planning approaches view
actions as atomic. A solution plan to a classical planning problem is a partial or
total order of actions. For temporal planning domains, on the other hand, actions
are no longer atomic, as each action gets assigned a duration and may arbitrarily
be positioned on the time axis. For temporal planning, finding a correct solution
is more complex: The correct solution may depend on the exact position of an
action in time and not only of its place in the sequence of actions. Obviously,
temporal planning is more complex than classical planning and requires more
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elaborate planning methods, which are typically much slower than their classical
counterparts.

2 Simple and Expressive Temporal Problems

Since the first appearance of temporal planning at the International Planning
Competition (IPC) in 2004 [2], temporal planners have significantly improved in
solving the posed problems. Yet, the actual profit gained by these improvements
is disputable: Most current temporal planners are incomplete. Cushing et al. [1]
establish this fact and provide also a classification for the affected planners. The
authors show that temporal planning problems are encountered in two complex-
ity classes: Simple and expressive. They also show that most current planners
can solve only simple problems and give a classification for the planners within
this class.

In a subsequent paper, the authors [3] provide a simple classification for
temporally simple problems and apply them to the IPC 2002, 2004, and 2006
problem domains, which are all found to be temporally simple. By studying exist-
ing sample problems, the authors conclude, that temporally expressive problems
seem to be quite rare. This observation is additionally supported by the fact that
the IPC 2008 sample problems3 also do not contain any expressive problems.

Yet, expressive problems are rare, although the language PDDL [2] used to
define allows their formulation. This fact is problematic, as temporally expressive
problems cause most current planners to simply fail without a suitable solution
plan, even given infinite time and space.

2.1 Decision Epoch Planning

According to Cushing et al. [1], most current temporal planners classify as de-
cision epoch planners (DEPs). The term refers to a performance “trick” that is
implemented by the particular planners: Instead of considering to schedule an
action at any possible point in time, only certain points in time —namely deci-
sion epochs— are considered by a DEP, which significantly reduces the search
space. This approach allows a planner to adapt the concepts of classical planners
for the new challenge of temporal planning.

But what exactly is a decision epoch? To give a proper definition, we first
need to bring to mind a few well-known concepts: First, remember, that PDDL
—in both its classical and temporal versions— allows effects to only take place
at discrete points in time, now called effection points. Note, that an effection
point te differs from the concept of a happening [4] in that the happening refers
to the set of concurrently happening effects, while the effection point refers to a
point on the time axis.

Definition 1. Any point in time, where the world state is modified by an action
is called an effection point (EP).

3 Available from http://ipc.informatik.uni-freiburg.de/
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We now consider planners that start at time t0 and iteratively schedule op-
erator instances. This mode of operation is called progressive planning, as the
planner searches through a state space and progressively makes commitments
about the current state. Examples include Fast Forward (FF, [5]) or Fast Down-
ward [6] and derived planners.

A progressive temporal planner starts with an empty list of scheduled oper-
ator instances and subsequently positions new operator instances on the time
axis, increasing the set of already positioned actions. This process also generates
an increasing set of decision epochs:

Definition 2. A decision epoch is an effection point of an already scheduled
action.

The basic idea of DEP is now, that every important planning problem at
hand happens at such decision epochs. This argument seems plausible at first
glance, as —by definition— every “committed to” effection point coincides with
a decision epoch. Now, since conditions are limited to hold at either the start,
end, or over the whole duration of an action, the following conclusion seems
natural: Future actions (that are yet to be scheduled) only need to start or end
at exactly such decision epochs; starting them elsewhere yields no benefit (for
further discussion and why this argument is incorrect, see [1]).

2.2 Required Overlap

Scheduling actions only at decision epochs significantly reduces the search space,
but is known to yield incomplete planners. Yet, DEP can solve most planning
problems, while other approaches based on interval constraint solving (e.g. [7],
[8]) are complete, but considerably slower.

In the mentioned work, Cushing et al. [1] relate this difficulty to the concept
of parallel actions. Consider an optimal solution to a temporal planning problem.
It consists of a positioning of operator instances in time. Now, it is often possible
to move some of these actions in time without giving up the scheduling’s property
of being a solution to the planning problem. For example, when two actions are
placed in direct succession and no other action is scheduled, the total length
of the plan may be expanded indefinitely by simply shifting the second action
forward in time. The resulting, transformed plan is not optimal any more, but
it is still a valid solution plan. While the shifting often may not be as trivial as
in this example, it is still possible in most cases.

Now, in partial order and in temporal planning, the durations of actions may
overlap in time. In partial order classical planning, every solution plan may be
stretched so that no actions overlap in time. The overlapping of actions is not
required, it just serves to reduce planning time when no conflicts are detected.
The same need not be the case for temporal planning: In certain circumstances,
the effect/condition combination of the participating actions may prevent the
actions to be shifted arbitrarily. For example, consider a simple “food slicer”
situation, where a special “safety button” needs to be pressed, before the machine
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is able to operate. By definition, there is no way to operate the machine, when
the button is not pressed and thus any other action needs to overlap with the
“push safety button” action.

But as noted, such “safety button” problems seem to be quite rare. Instead,
most temporal solution plans contain only actions that may be shifted to yield
a new solution with no overlap between the scheduled actions. We call such a
transformed solution a linear rescheduling.

Definition 3. A linear rescheduling of a solution to a temporal planning
problem is one, where the actions of the original solution have been shifted, so
there is no more overlapping of actions in time.

2.3 Temporally Simple To Classical Transformation

The most important fact about linear solutions is that problems with linear
solutions cannot be really called temporal [1]. We show, that a simple algorithm
is sufficient to transform a temporally simple planning problem to a classical
planning problem and this fact has also been confirmed by our experiments.

– Expand all condition specifications to hold OVER ALL except those that are
satisfied by the effects of the same action. Remove these self-satisfied condi-
tions.

– Move all effect specifications to come to effect AT END. This requires careful
consideration of the effect order with regard to PDDL semantics, but has
still proved to be possible without major difficulty.

– Drop all actions that are self-contradictory (by self-contradicting conditions
or effects that deny a condition).

When these transformations have been performed, it is possible to run a
classical planner on the new planning problem and obtain a —typically non-
optimal— solution to the temporal planning problem. In experiments, we have
successfully transformed temporal planning problems to classical planning prob-
lems using only the proposed simple transformations. We therefore can confirm
Cushing et al.’s statement: A problem with a linear solution is no more complex
than a classical planning problem.

Proof Sketch. Assume that the solution to a temporal planning problem is indeed
a linear scheduling. As every action follows each other in a strict sequence, every
action may only depend on the situation created by all its preceding actions.
Since this is the case, it is sufficient to have a single effection point per operator
instance.

Again, since no effect from another action can interfere with the current ac-
tion, all of its conditions need to be either self-satisfied or provided by preceding
actions. It is thus acceptable to require conditions hold over the whole duration
of an action.

The resulting operators with only OVER ALL conditions and AT END effects
are simply the temporal formulation of a classical planning problem.
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Definition 4. A temporally planning problem with a linear solution is called
temporally simple. If all solutions to a problem require overlapping scheduling
of actions, the problem is called temporally expressive.

A domain, for which only temporally simple problems may be specified, is
temporally simple. A domain, for which problems may be specified, that are not
temporally simple, is temporally expressive.

(definition rephrased from [1]).

2.4 DEP is not Temporally Simple

In their succession paper, Cushing et al. state that the planners winning temporal
planning competition, which are based on decision epoch planning, are incomplete
for any subset of PDDL 2.1.3 that is able to model domains and problems whose
solutions require concurrency [3, page 8]. This argument is somewhat misleading,
as the concept of a subset here relates only to the particular set of language
restrictions defined in their original paper [1].

In PDDL, conditions and effects are tied to an action’s duration. It particular,
only the following alternatives are possible:

C ⊆ {s, o, e} indicates, that conditions need either be met at the start (s), over
(o) the complete duration or at the end (e) of an action.

A ⊆ {s, e} indicates, that effects can either happen at the start (s) or at the end
(e) of an action.

By categorising conditions and effects, it is possible to divide planning do-
mains by the language subset they use. We define such a subset of the domain
definition language by symbols of the form LC

A, where C and A are defined as
above.

We determine this language subset by considering all operators in turn and
filling the C and A sets. If an operator contains an effect at one of the above
locations s or e, we add the corresponding item to A. If an operator requires a
condition to hold at one of the above interval specifications s, o or e, we add the
corresponding item to O. In this way, be obtain a specification of used features,
i.e. the relative locations of the conditions and effects of all operators.

Categorized as such, Cushing et al. prove, that the languages Ls, Le, Ls
s,

Lo
s, Lo

e, and Le
e lack the ability to express required concurrency. Yet, using only

these language subsets is not sufficiently fine-grained to properly categorize DEP:
While any problem formulated in a temporally simple language is really tem-
porally simple and can be solved by DEPs, the reverse direction does not hold:
There are problems in temporally expressive language subsets that can be solved
by decision epoch planners, which we will show by example.

Our example problem uses a relatively simple problem that is slightly related
to the DWR-domain from [9]. Consider three robots (r1, r2, r3) that are situated
on three different platforms (l1, l2, l3) as depicted in figure 2. There is only a
single operator move(?robot , ?from, ?to) that moves a robot ?robot from platform
?from to a platform ?to. The only restriction in the presented world is, that a



VI

robot cannot move onto a platform, if it is still occupied by another robot.
A platform may only be occupied by a single robot at any point in time. To
keep things simple, though, we will assume, that the robots have a sufficiently
advanced path finding and collision avoidance system and thus multiple robots
may be on the move at the same time, even between the same platforms. The
robot domain may be formulated in PDDL using the language Ls,e

s,e, which is
temporally expressive (see figure 1).

1 | ( : du r a t i v e− a c t i o n move

| | : pa ramete r s (? r − r obo t

| | |? from − l o c a t i o n ? to − l o c a t i o n

| |)
5 | | : du r a t i o n (= ? du r a t i o n 1)

| | : c o n d i t i o n (and

| | |( at s t a r t ( at ? r ? from ) )
| | |( at end ( f r e e ? to ) )

9 | |)
| | : e f f e c t (and

| | |( at s t a r t (not ( at ? r ? from ) ) )
| | |( at s t a r t ( f r e e ? from ) )

13 | | |( at end ( at ? r ? to ) )
| | |( at end (not ( f r e e ? to ) ) )
| |)
|)

Fig. 1. Robot domain in PDDL

l2l1

r3

r2

l3

r1

Fig. 2. Sample problem in the robot domain

Assume, that our single goal is to get robot r1 to occupy platform l2. For
this to work, r2 — which occupies the target platform initially — must leave
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the platform. But since r2 can only move directly to another platform, r1 and
r2 need to exchange places simultaneously. Most importantly, r2 has to leave
platform l2 at least some time before r1 reaches it.

There is a simple (the simplest in terms of execution time) solution to
this problem. The solution plan schedules two instances of the move() op-
erator at time t0, i.e. directly at the start of the planning run. Scheduling
move(r1, l1, l2)@t0

4 and move(r2, l2, l1)@t0 with overlap yields the intended re-
sult.

Note, that to find this optimal solution, actions need only to be scheduled at
decision epochs and thus the problem is DEP-solvable. Still, the problem is not
temporally simple, as the robots’ movements are required to overlap to obtain a
valid solution plan. The domain by itself is a subset of a temporally expressive

This simple example shows, that the two problem classes temporally simple
and DEP-solvable are not equivalent. The statement that DEP is not complete
for any temporally expressive subset of PDDL is correct only if one restricts itself
to Cushing et al.’s language categorisation. If one allows more general concept
of language categorisation, the assertion does not hold any more.

Proof Sketch. DEP can solve all problems that are temporally simple. A tem-
porally simple problem has at least one — potentially non-optimal — solution
that is a linear scheduling. In a linear scheduling every action only has to be
placed in direct succession of its predecessor and thus at no other point than a
decision epoch.

Yet, by the example above, there exist problems that are not temporally sim-
ple, but can be solved by DEP. By definition, a problem instance by itself is a
language subset of PDDL. The robot problem is a subset of a temporally expres-
sive language class. Therefore, the assertion that DEP cannot solve problems in
any subset of a temporally expressive language class does not hold.

DEP is an incomplete approach to solve temporal planning problems that
pushes only somewhat beyond the boundary of temporal simplicity. It is not
possible to completely capture the possibilities of DEP only using simple lan-
guage classes based on effect/condition positions.

3 Handling Low Degrees of Temporal Simplicity

By considering temporally simple and temporally expressive as the extreme points
on a scale, we can define a fine-grained partition of the middle ground between
them. We then show how DEP can solve problems falling in this middle ground
and thus how it can have some limited degree of temporal expressiveness.

4 We note solution plans for temporal problems with operator(a, . . . , z)@t, when the
operator instance operator(a, . . . , z) needs to start at time t.
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t0 t0+d

move(r2,  l2, l1)

move(r1, l1, l2)

Fig. 3. Presumed solution for the Sample Robot Domain

3.1 Action Combination

The concept of “degrees of temporal simplicity” gives rise to another approach to
solve temporal planning problems. Remember, that in PDDL effects of actions
still happen at discrete points in time, namely at effection points. Consider the
following example.

Figure 4 shows an abstract solution plan for a planning problem. Assume,
that the overlapping of op

1
and op

2
is required and thus the planning problem

is temporally expressive.

o p 1

o p 2

o p 3

Fig. 4. Action Combination Example

To give an understanding of our approach, assume that the actions op
1

and
op

2
are replaced by a single, “larger” operator represented by the grey rectangle.

In terms of its conditions and effects, this new “macro operator” shall be indis-
tinguishable from the displayed combination of the two operators op

1
and op

2
,

i.e. the macro operator is an equivalent replacement. After the replacement, only
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the macro operator and op
3

remain in the solution plan. This new arrangement
of operators is a linear scheduling and no more overlapping takes place.

The described observation leads to an interesting result: If it is possible to
combine overlapping actions into “macro actions” that exhibit the same result as
if the individual actions were scheduled, we are able to transform a temporally
expressive problem into a temporally simple one. The trade-offs are an increased
set of operators and —again— the potential loss of optimality.

The idea is not new: Macro operator generation is a common method to
reduce complexity: For planning, an early example is presented by Korf [10].
Recent approaches include the following: Case based techniques [11] analyse prior
solutions to find commonly used operator combinations. Botea at al. ([12], [13])
generate abstract components (i.e. macro operators) from analysis of the static
problem graph of classical planning problems. To our knowledge, no application
of macro operator generation exists for the domain of temporal planning.

3.2 n-ary Simple Problems

As temporal planning is truly more complex than classical planning, we cannot
simply generate all possible macro operations, run a classical planner on the
temporal planning problem and thus completely reduce temporal planning to
classical planning. As one expects, the number of possible macro operations
grows exponentially with the maximum number of actions in the desired solution
plan.

Proof Sketch. To combine a maximum number of m operators, it is sufficient to
schedule their start and end times independently into a sequence.

As per PDDL’s language definition, there are at most two effection points
per operator (AT START and AT END). Without loss of generality, we assume that
there are exactly two effection points per operator, i.e. 2 × m.

Since operator durations may be zero, positioning effection points is equiva-
lent to finding a partitioning xi, such that

∑

i

xi = 2 × m. The number of these

partitionings may be —for example— calculated with Rademacher’s convergent
series [14] and is known to grow exponentially.

The analysis above ignores the constraints between the various effection
points. The fact that AT END effects cannot happen before the AT START ef-
fects of a single action and the additional constraints introduced by the differing
durations of the various actions are ignored in the analysis above. Consider-
ing these constraints would introduce an exponential reduction factor, but that
grows much less than the number of partitionings.

Consequently, the number of possible schedulings of m actions also grows
exponentially in m.

Table 1 shows the number of macro operators generated for the robot do-
main as mentioned above. Note that, while exponential growth of the number of
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generated action tuples cannot be prevented, many generated action tuples can-
not be scheduled, because their conditions and effects are contradictory. Pruning
these invalid action tuples provides a significant reduction in the total number
of macro operators.

tuple size number of macro operations

2 26
3 818
4 47394

Table 1. Number of generated schedulings for the robot domain

Note also, that the solution to the robot problem requires only the overlap-
ping of two actions and thus the generation of action combinations of more than
two actions is not required.

Indeed, one could assume, that — since all problems presented in recent inter-
national planning competitions (IPC) have been temporally simple — problems
that require the parallel scheduling of two actions are already rare. Consequently,
domains that require the combination of a tuple of three or even four operators
are even less likely to occur in practice. We thus define the concept of n-ary
temporally simple problems:

Definition 5. A planning problem is n-ary (temporally) simple, if there is
a solution plan that requires only the temporal overlapping of at most n actions.

This definition allows recasting the definition of temporally simplicity as
used by [1]. A planning problem is temporally simple, if it is unary temporally
simple. The example robot problem is binary temporally simple, as it requires
the overlapping of at most two actions.

4 Evaluation and Future Work

We have built a prototype to test empirically, if macro operator generation is a
feasible approach to further push the temporal planning limits.

The prototype generates operator combinations from the ungrounded do-
mains rather than action combinations using only grounded operators with no
variables. This was done to improve the re-usability of the generated target do-
mains. Unfortunately, this design choice also significantly increases the complex-
ity of both the required transformation algorithms and the transformed domains.

The abstract transformation step is very time consuming, owing to the fact
that complex verifications and checks has to be made to guarantee a complete
and correct result. Given a set of source operators, every possible relative po-
sitioning of these operators have to be considered. Additionally, the conditions
and effects of the generated macro operator depend on the actual values of the
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source operators’ parameters. Depending on the structure of the source opera-
tors, certain parameter combinations may force us to generate multiple macro
operators with differing condition and effect sets. (see [15] for a full discussion).

Due to the complexity of the abstract transformation, the generated macro
operators may become quite complex. In some cases, the generated domains even
caused serious trouble for the planners used for verification, as problems with the
PDDL parsers of particular planners are not uncommon. For example, LPG [16]
often rejected syntactically valid domains or the program simply crashed when
trying to parse some of the transformed domains. These experiences lead to the
conclusion, that a possible re-evaluation should be tried using only grounded
operator tuples.

Still, despite the technical problems, a set of benchmark runs was completed
using artificially generated sample problems and domains. After the operator
combination step, 8% of the transformed domains that previously could not be
solved by DEP, could then be solved by a classical planner.

Results have shown, that pre-generating overlapping schedulings from tem-
porally expressive domains can be used to transform n-ary temporally simple
problems into classical planning problems. We have empirically evaluated the
process for n = 2 and have seen promising results.

Yet, future work is still required. Many of the generated macro operators
are already invalid and can be detected by finding condition and effect conflicts.
Additionally, many operator combinations violate domain invariants and thus
can never be instantiated. Use of an invariant detection mechanism can thus
further reduce the amount of generated macro operators. Additionally, it has to
be evaluated, if performing the combination step at the level of grounded actions
yields a better performing approach.
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